
 

 

Software programming Guide v2.0        www.eeti.com 0 

          

  

eGalaxTouch  

Software Programming Guide 

Version 2.0 



 

 

Software programming Guide v2.0        www.eeti.com 1 

Contents 

1. Introduction 

2. Programming Guide of Using eGalaxTouch Controller 

2.1  Protocol 

2.1.1 Diagnostics Packet 

2.1.2 Report Packet 

2.2  Interface 

RS232 Interface 

2.3  Packet Parser Sample Code 

2.4  2 Points Calibration for Position Decoding 

2.5  Multi-Gesture Report 



 

 

Software programming Guide v2.0        www.eeti.com 2 

Chapter 1. Introduction 

EETI provides a full range of controllers designed to optimize the performance of 

analog resistive touch panels. The controller communicates with the PC system 

directly through RS232, PS/2, USB port and even I2C. In recent years, portable 

devices become popular, and I2C transaction is the best way to communicate with 

these portable devices, like PDA, eBook, Mira, etc.  

EETI’s superior design combines accuracy, sensitivity and speed to reach the 

outstanding touch performance and ease of use. The drivers emulate the mouse input 

and right button function, and support a variety of operation systems, including DOS, 

Windows series: 98 / ME / NT4 / 2000 / XP / VISTA / 7, Windows CE.net, Mac, and 

Linux kernel 2.4.x / 2.6.x with XFree86 or xorg system. 

However, some special designs, our honor customers have to develop their own 

programs communicating with the touch panel controller firmware directly. In chapter 

1 of this application note, firstly the needed protocols are described. Then, the special 

notices of programming RS232 is expressed. At the end, the sample code of parsing 

the protocols and the two points calibration conversion formulas are listed. 



 

 

Software programming Guide v2.0        www.eeti.com 3 

Chapter 2. Programming Guide of Using eGalaxTouch Controller 

 

. 

2.1 Protocol: 

All eGalaxTouch controllers including RS232 interface use the protocols. And, the 

protocols can be classified into 2 groups: Diagnostics Packet and Report Packet.  

 

2.1.1 Diagnostics Packet: 

 

These packets are issued from the host for querying some device information. 

The controller firmware will report the corresponding data to the host. The packet 

format is as follows: 

 

0x0A LengthInByte + 1 Command Response 

   1 Byte   1 Byte   1 Byte   LengthInByte Bytes 

 

The maximum packet size is 16 bytes. The first byte is Start of Packet as 0X0A. 

The second byte is the length of Response. The third byte is the issued command 

and the last part (length is defined in second byte) is the response from controller 

firmware. 

 

1. Check active : This packet is to check if the device is working properly. 

Host issues  

0x0A 1 ‘A’ 

Device responds when active 

0x0A 1 ‘A’ 

 

2. Get firmware version: 

Host issues  

0x0A 1 ‘D’ 

Controller firmware responds  

0x0A Length ‘D’ Response 

  The response is an ASCII string, such as ‘0.99’ 

 

 

 

 



 

 

Software programming Guide v2.0        www.eeti.com 4 

3. Get type: This packet is to request the controller type.  

Host issues  

0x0A 1 ‘E’ 

Controller firmware responds 

0x0A Length ‘E’ Response 

   

 

2.1.2 Report Packet: 

 

eGalaxTouch USB HID compliant controllers support Microsoft HID touch digitizer. 

By default, eGalaxTouch HID compliant controller reports with HID format for 

coordination data according to the HID report descriptor it reported to Host 

system. In addition, eGalaxTouch serial RS232 controllers support emulation 

modes. Serial controller’s report format depends on the format of command sets 

it receives from Host. By default, it reports with non-emulated packet format as 

below. To make sure the controllers to report with the below format, the host 

driver should issue any one of diagnostics packet data to controller. For 

example, host driver may send a “Check Active”( 0x0A, 1, ‘A’ ) packet data to 

controller to make it report with below report format. 

 

Each report packet may contain 5 or 6 bytes as below: 

 MSB LSB 

1 Z M 0 0 AD1 AD0 Status 

0 A13 A12 A11 A10 A9 A8 A7 

0 A6 A5 A4 A3 A2 A1 A0 

0 B13 B12 B11 B10 B9 B8 B7 

0 B6 B5 B4 B3 B2 B1 B0 

0 P6 P5 P4 P3 P2 P1 P0 

 

Byte0: It is the header of the point packet. It contains below point information 

Z: pressure bit. eGalaxTouch SAW technology controller may report with 

  pressure information.   

   Z = 0: means no pressure information 

   Z = 1: means Byte5 is pressure information.     

  M: Player ID. eGalaxTouch multi-player controller report player ID  

information 

   M = 0: means no player ID information 

   M = 1: means Byte5 is player ID 

Byte0 

Byte1 

Byte2 

Byte3 

Byte4 

Byte5 



 

 

Software programming Guide v2.0        www.eeti.com 5 

     AD1,AD0: resolution information of the current point coordination. 

      AD1:AD0 = 0:0: means the coordination resolution is 11 bits 

   AD1:AD0 = 0:1: means the coordination resolution is 12 bits 

AD1:AD0 = 1:0: means the coordination resolution is 13 bits 

AD1:AD0 = 1:1: means the coordination resolution is 14 bits   

        Status: touch down status.  

   Status = 1: means touch down  

   Status = 0: means lift off point  

To indicate the touch status: 1 for touch down and 0 for touch up. 

Byte1~Byte4: 

A10/A11/A12/A13 – A0: 11/12/13/14 bits of 1st direction raw data 

B10/B11/B12/B13 – B0: 11/12/13/14 bits of 2nd direction raw data 

 Please be aware that A and B just represent 2 resolution directions 

of the touch panel. 

Byte5: Pressure or player ID 

The point packet has 6th byte only when Z = 1 or M = 1. 

Otherwise, the point packet has 5 bytes only. 

Z = 1: means this byte is pressure value. 

M = 1: means this byte is player ID.    

  

   



 

 

Software programming Guide v2.0        www.eeti.com 6 

2.2 Interface: 

RS232 Interface: 

If RS232 controller is used, please specify the following information in the driver 

programs: 

� Baud rate：9600 bps. 

� Data bits：8 

� Stop bit：1 

� Parity check：NONE. 

 

2.3 Packet Parser Sample Code:    
 

#define MAX_BUFFER   1024 

#define MOUSE_PACKET_LEN  5 

#define MAX_CMD_LEN    16 

#define POLLING_BUFFER_SIZE 3 

 

unsigned __stdcall  PortThreadRoutine(  LPVOID pContext ) 

{ 

 CPort *pPort = ( CPort *) pContext; 

 CHAR  pBuffer[ MAX_BUFFER ]; 

 CHAR      pMsgBuffer[ MAX_BUFFER ]; 

 DWORD   dwRead = 0; 

 DWORD   dwCnts = 0; 

 BOOL bPointPacket = FALSE ; 

 BOOL bCmdPacket   = FALSE; 

 DWORD dwCmdPacketLen; 

 UCHAR ucChar; 

 INT i; 

 

 while( TRUE ) 

 { 

  if( WAIT_OBJECT_0 == ::WaitForSingleObject( pPort->m_hStopEvent, 0 ) ) 

  { 

   return 100; 

  } 

 

 

 



 

 

Software programming Guide v2.0        www.eeti.com 7 

  // read packet from COM port or USB port 

  if ( pPort->Read( pBuffer, POLLING_BUFFER_SIZE, &dwRead, pPort->m_hReadEvent ) ) 

  { // parse the packet 

   for( i = 0; i< (INT)dwRead; i++ ) 

   { 

    ucChar = pBuffer[ i ] ; 

    if(  ( pBuffer[ i ] &  0xF0 ) == _SYNCBIT ) && !bCmdPacket ) 

    { 

     dwCnts = 0; 

     pMsgBuffer[ dwCnts ] = pBuffer[ i ]; 

     bPointPacket = TRUE; 

     dwCnts++; 

     continue; 

    } 

    else if( _SOP == ucChar && !bPointPacket && !bCmdPacket ) 

    { 

     bCmdPacket = TRUE; 

     dwCmdPacketLen = ( DWORD )-1; 

     bPointPacket = FALSE; 

     continue; 

    } 

    else if( bCmdPacket ) 

    { 

     if( ( DWORD )-1  == dwCmdPacketLen  ) 

     { 

      dwCmdPacketLen = ( DWORD )pBuffer[ i ]; 

      dwCnts = 0; 

      if( dwCmdPacketLen > MAX_CMD_LEN ) 

       dwCmdPacketLen = MAX_CMD_LEN; 

      continue; 

     } 

     pMsgBuffer[ dwCnts ] = pBuffer[ i ]; 

     dwCnts++; 

     if( dwCmdPacketLen == dwCnts ) 

     { 

      dwCmdPacketLen = 0; 

      pMsgBuffer[ dwCnts ] = 0; 

      dwCnts++; 

 



 

 

Software programming Guide v2.0        www.eeti.com 8 

      // Here, a completely Cmd packet received !!! 

      // Do what you want to do! 

      // For instance,   

      // pPort->DisPatchMessage( pMsgBuffer, dwCnts ); 

      dwCnts = 0; 

      bCmdPacket = FALSE; 

      continue; 

     } 

     continue; 

    } 

    if( bPointPacket ) 

    { 

     pMsgBuffer[ dwCnts ] = pBuffer[ i ]; 

     dwCnts++; 

     if( MOUSE_PACKET_LEN == dwCnts ) 

     { 

      // Here, a completely point packet received !!! 

      // Do what you want to do! 

      // For instance,   

      //pPort->DisPatchMessage( pMsgBuffer, dwCnts ); 

      dwCnts = 0; 

      bPointPacket = FALSE; 

     } 

     continue; 

    } 

   } 

  } 

 } 

} 



 

 

Software programming Guide v2.0        www.eeti.com 9 

2.4  2 Points Calibration for Position Decoding  

System software developer can develop their own simple calibration tool based on 

below sample. However, eGalaxTouch Saturn Resistive and ESC7000 Capacitive 

controllers also support advanced 4, 9, and 25 points calibration. Please reference to 

the document “EETI Calibration Design Guide”.  

 

 

 

 

 

 

 

 

 

 

 

 

1. LL and UR are the calibration points of touch panel, the points are setup at  

LL = ( 1/8 screen X, 1/8 screen Y ) = ( 256 , 256 ) ADC ;  

UR = ( 7/8 screen X, 7/8 screen Y ) = ( 1791 , 1791 ) ADC 

2. When we do the calibration, press on these two points, then we get the row data 

LL‘ and UR’: 

LL’ = ( LLX, LLY ) ; UR’ = ( URX, URY ) 

3. After the calibration, when you touch the panel and get another row data X and Y. 

The new position after calibration are X’ and Y’, and the conversion formulas are 

as follows: 

 

X’  =                    *  1536  +  256  

 

Y’  =                    *  1536  +  256  

 

( 0 , 0 ) ADC ( 2047 , 0 ) ADC 

( 2047 , 2047 ) ADC ( 0 , 2047 ) ADC 

UR =( 1791 , 1791 ) ADC 

LL = ( 256 , 256 ) ADC 

X  –  LLX 

URX  –  LLX 

Y  –  LLY 

URY  –  LLY 



 

 

Software programming Guide v2.0        www.eeti.com 10 

 

2.5 Multi-Gesture Report 

eGalaxTouch SAW and IR technology controllers support rectangle based 

multi-gesture report. Software application program can generate some gesture 

events according to the rectangle report from the controller and driver. The report 

format is as below 

0x0A + 10 + ‘4’ + TouchState + X_LL( 2 bytes ) + Y_LL( 2bytes ) + X_UR( 2bytes ) 

+ Y_UR( 2bytes )  

 

TouchState = 0, lift off 

    = 1, touch down 

 

 

 

 


